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ABSTRACT 

The design and implementation of a systems approach to a scalable, standardized 

automated cyber penetration testing system using the Detect, Identify, Predict, React 

(DIPR) intelligence automation model and data interoperability standards is the focus of 

this thesis.  The system fuses information from multiple freeware programs that can be 

thought of as cyber sensors into an interoperable, robust whole in a manner that can tailor 

itself and learn over time.  The groundwork is laid for an enduring system that can adapt 

to changing systems and vulnerabilities.  A barebones proof-of-concept system is 

implemented and  tested using NMap and Ettercap with the proposed DIPR XML file 

formats as the data intelligence automation standardization mechanism.  By 

implementing this automated cyber penetration system, labor-intensive and costly cyber 

penetration testing can be simplified by reducing the amount of hand coding and manual 

testing. 
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EXECUTIVE SUMMARY 

As industry becomes more reliant on complex computer systems using well-known 

protocols, it becomes increasingly important to ensure vulnerabilities are caught and 

corrected early [1].  A method of addressing this need is to focus on the automation of 

penetration testing in order to reduce time and manpower required to test well-known 

vulnerabilities.  The impact of rising levels of complexity of software and networks 

creates a dynamic environment requiring additional time and effort to adequately adapt 

tools and techniques [1].  

One approach to detecting vulnerabilities is cyber penetration testing. This task is 

most beneficial to increasing cyber security; however, there is a high cost of time, money, 

and manpower associated with manual cyber penetration [1].   

With increased computing power available, intelligent automation is a clear 

choice for simplifying the lives of both administrators and developers.  Actual 

implementation, however, is harder when the long-term scalability and evolution of both 

vulnerabilities and exploits must be taken into account.  Data needed to pass information 

between automated systems needs to be standardized into an interoperable data schema.  

In order to scale, standardize, and automate intelligence, a system of systems 

methodology to automating cyber penetration testing is needed. This is the high-level 

goal and problem statement for this thesis. 

To achieve the high-level goal of automating cyber penetration testing, there are 

three objectives for this thesis: (1) use a systems approach to design an architecture that 

automates the tasks of a cyber-penetration operator, (2) design an interoperable data 

format to interpret the automation systems, and (3) implement a proof-of-concept system 

of the modeling/design objectives (1) and (2). 

A unique systems solution to the high-level goal of automating cyber 

vulnerability evaluation and penetration of a target network is presented in this thesis.  In 

order to achieve the first objective of systems architecture design for automating a cyber-

penetration system, the Detect, Identify, Predict, React (DIPR) intelligence automation 
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model is utilized.  In previous work the DIPR framework has been applied to cyber for 

determining defensive cyber-attacks, where the detect modules attempt to dynamically 

detect cyber red team activity [2]–[5].  In [2], the dynamic defensive cyber sensors were 

Intrusion Detection Systems, and the research focused on the optimal configuration of 

such systems in order to detect and identify states indicative of red team activity.  In 

contrast to [2], the DIPR framework is used in this thesis to detect network activity using 

freeware programs as cyber sensors that are needed in order to sense the vulnerability of 

a network device in the cyber terrain.  This systems approach yields a long term solution 

to automating cyber penetration with the ability for the system to scale by selecting “plug 

and play” cyber penetration tools. It is a system that maximizes the processing the 

computer performs to automatically analyze targets, properly identify vulnerabilities, and, 

finally, perform automated cyber penetration attacks. 

The foundation for creating a scalable and implementable automated system that 

maximizes individual components is to have a clear architecture planned beforehand.  By 

endeavoring to enable any new program to fit and feed into this system, a flexible and 

long-lasting tool is produced that can adapt as both vulnerabilities as well as the methods 

for exploiting those vulnerabilities change.   

The approach taken by this thesis is to first generate a system of systems 

architecture for automating cyber penetration testing, which includes both system design 

and design of the needed data interoperability standards for the data transmitted between 

each intelligence automation system.   

The external systems diagram (ESD) of the proposed cyber systems of systems 

approach for automating cyber penetration of a network connects directly into the 

targeted cyber network.  The external systems diagram of such a proposed solution is 

depicted in Figure 1.  The external systems are the human operator and the targeted 

network system needing cyber penetration, denoted as “Cyber Terrain.”  The operator in 

this case initially is deeply involved in developing exploits for specific vulnerabilities to 

tailor to the DIPR Automated Cyber Penetration System.  Subsequent to tool 

development, the operator is involved to a limited extent while the DIPR system is 
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executing, allowing the automated system to process and launch the desired exploit.  The 

operator may choose to validate the automated process and provide feedback. 

 
Figure 1. The DIPR automated cyber penetration system external system. 

Breaking the proposed system into a more detailed view, we can see the data flow 

between the modules as depicted in Figure 2.  The DIPR Automated Cyber Penetration 

System includes four intelligence automation modules that transform cyber data from 

data created when initially sensing the cyber terrain using freeware programs. Then the 

data is transformed into intelligence automation representations associated with four 

modules of intelligence automation: Detect, Identify, Predict, and React.  Besides the 

DIPR modules, there are the Graphical User Interface (GUI), network and exploit data 

structures.  The data flow begins with an interface between the DIPR system and the 

cyber terrain which captures the data using various freeware programs (Metasploit, 

NMap, Xprobe2, etc.).  In order for the solution to scale and adapt to the disparate nature 

of the outputs of the various freeware programs, a translation step must occur.  Thus, the 

proposed system’s functionality includes the ability to transform these outputs into 

useable, interoperable middleware formats.   
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Figure 2. The proposed DIPR automated cyber penetration system. 

The graphical user interface serves as the command and control (C2) structure for 

the system.  As each module performs its specific automated task, the GUI automatically 

allows the next module to begin.  This is also where the operator has the option to 

manually select and specify exactly which tasks to accomplish against the chosen target. 

For the sake of complexity management and storage reduction, only those features 

that are useful to exploits are retained. The Detect module creates a feature database per 

network entity, where a feature of a cyber-entity is considered a technical detail or piece 

of information about that host or network (open port, operating system, etc.) which later 

can be used to analyze that entity.  Detect features are represented and stored in data 

structures as part of the proposed DIPR Intelligence Automation Interoperability 

standards for data representation.  Similarly, the details required for each exploit are 

stored in their own data structure.  These data structures are maintained in a tree 

formatted extensible markup language (XML) document. 

Each of these features is then processed within the Identify module to determine 

vulnerabilities, where an intelligent state can be identified based on a group of specific 

features occurring simultaneously.  If vulnerabilities exist, then that host’s data structure 
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is updated accordingly.  Several fused features (i.e., intelligent states) occurring in a 

pattern within a period of time result in them being classified as a behavior in the predict 

module. 

After the state sequences are formed and vulnerability behaviors are classified, the 

predict module processes the inferred vulnerability behavior outcome by determining 

which exploits are available against the target.  Based on operator input and likelihood of 

success, a recommended cyber penetration attack is generated and added to the 

vulnerability data structure. 

When the inferred recommendation has been made, the react module uses all of 

the accumulated data to then launch the penetration attack most likely to succeed against 

the target computer. Upon completion, it determines if the attack was successful and 

feeds that information back into the exploit data structure to update the expected 

probability of success for that attack against that vulnerability.  

The DIPR intelligence automation interoperability standards are used to represent 

data generated by the DIPR modules.  Specific XML schemas which map to the DIPR 

modules in order to represent data between them are proposed in this thesis.  By 

implementing output/input of DIPR modules using XML files, the DIPR Automated 

Cyber Penetration system can scale with more freeware programs (cyber sensors) and 

more discovery/react tools.  

Following the generated architecture, we implement the architecture in a proof-of-

concept system, including both software implementations within a virtual network along 

with data interoperability standards implementation using proposed structured file 

formats.   

The final proof-of-concept network was set up using a simple client server 

configuration.  Using freeware together with the backbone architecture, a man-in-the-

middle (MiTM) attack was launched which poisoned the network and subsequently 

intercepted the data flowing between the client and the webserver.  For each success, the 

program updated the exploit database probability of success for that penetration attack 

exploiting that vulnerability.  The starting status for the penetration attack machine was a 
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blind entrance onto the network with all target IP addresses unknown.  There was one 

server, one penetration attack box (running a basic version of the architecture proposed in 

this thesis), and a client which sent information back and forth across the network to a 

web server.  Overall success was determined by the positive integration of freeware 

programs for network discovery and attack as well as successful vulnerability analysis 

and attack prediction. 

Ultimately, this system does not remove the need for an experienced analyst 

evaluating vulnerabilities or methods of exploiting these vulnerabilities.  It helps provide 

a new long-lasting tool that will reduce the time needed to manually test and exploit a 

network.  As operating systems and network traffic change, so will the need for tools 

used to properly identify key vulnerabilities in an exploited system, underscoring the 

importance of being able to add new tools as fluidly and rapidly as possible to the system.  

This will benefit organizations in operational, tactical, strategic and acquisitions positions 

that have the need to determine, prioritize, and address network vulnerabilities of 

networks quickly and efficiently.   
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I. INTRODUCTION, OVERVIEW AND BACKGROUND 

An overview of the problem statement, goals and an approach to solving the 

problem are presented in this thesis.  Following the overview is a breakdown of 

stakeholder needs, a literature review of various automated cyber penetration systems, 

and a summary of the remaining three chapters. 

A. OVERVIEW 

The goals and objectives of this research as described in the problem statement, 

and the proposed three-tiered approach to solving the problem are provided in this 

section.   

1. Thesis Problem Statement, Goals, and Objectives 

As industry becomes more reliant on complex computer systems using well-

known protocols, it is increasingly important to ensure vulnerabilities are caught and 

corrected early on [1].  A method of addressing this need is to focus on the automation of 

penetration testing in order to reduce the time and manpower required to test well known 

vulnerabilities.  The impact of rising levels of complexity of software and networks 

creates a dynamic environment requiring additional time and effort to adequately adapt 

tools and techniques [1]. 

One approach to detecting vulnerabilities is cyber penetration testing as described 

in a subsequent section of this chapter.  This task is most beneficial to increasing cyber 

security; however, there is a high cost in time, money, and manpower associated with 

manual cyber penetration [1].   

With increased computing power available, intelligent automation is a clear 

choice for simplifying the lives of both administrators and developers.  Actual 

implementation is harder when the long term scalability and evolution of both 

vulnerabilities and exploits must be taken into account.  Data needed to pass information 

between automated systems needs to be standardized into an interoperable data schema.  

To scale, standardize, and automate intelligence, a system of systems methodology to 
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automating cyber penetration testing is needed.  This is the high-level goal and problem 

statement for this thesis. 

To achieve the high-level goal of automating cyber penetration testing, there are 

three objectives for this thesis: (1) use a systems approach to design an architecture that 

automates the tasks of a cyber-penetration operator, (2) design an interoperable data 

storage format to facilitate interpretation automation systems, and (3) implement a proof-

of-concept system of the modeling/design objectives (1) and (2). 

2. Approach to Proposed Solution  

A unique systems solution to the high-level goal of automating cyber 

vulnerability evaluation and penetration of a target network is presented in this thesis.  In 

order to achieve the first objective of systems architecture design for automating a cyber-

penetration system, the Detect, Identify, Predict, React (DIPR) intelligence automation 

model is utilized.  In previous work the DIPR framework has been applied to cyber for 

determining defensive cyber-attacks, where the detect modules attempt to dynamically 

detect cyber red team activity [2]–[5].  In [2], the dynamic defensive cyber sensors were 

Intrusion Detection Systems, and the research focused on the optimal configuration of 

such systems in order to detect and identify states indicative of red team activity.  In 

contrast to [2], the DIPR framework is used in this thesis to detect network activity using 

freeware programs as cyber sensors that are needed in order to sense the vulnerability of 

a network device in the cyber terrain.  This systems approach yields a long term solution 

to automating cyber penetration with the ability for the system to scale by selecting “plug 

and play” cyber penetration tools. It is a system that maximizes the processing the 

computer performs to automatically analyze targets, properly identify vulnerabilities, and, 

finally, perform automated cyber penetration attacks. 

3. DIPR Intelligence Automation System Architecture 

The foundation for creating a scalable and implementable automated system that 

maximizes individual components is to have a clear architecture planned beforehand.  By 

endeavoring to enable any new program to fit and feed into this system a flexible and 
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long lasting tool is produced that can adapt as both vulnerabilities as well as the methods 

for exploiting those vulnerabilities change.   

The approach taken in this thesis is to first generate a system of systems 

architecture for automating cyber penetration testing, which includes both system design 

and design of the needed interoperability standards for the data transmitted between each 

intelligence automation system.  The former is discussed in this section.   

The external systems diagram (ESD) of such a proposed solution is depicted in 

Figure 1.  The external systems are the human operator and the targeted network system 

to be penetrated, denoted as “Cyber Terrain.”  The operator in this case initially is deeply 

involved in developing exploits for specific vulnerabilities to tailor to the DIPR 

Automated Cyber Penetration System.  Subsequent to tool development, the operator is 

involved to a limited extent while the DIPR system is executing, allowing the automated 

system to process and launch the desired exploit.  The operator may choose to validate 

the automated process and provide feedback. 

 
Figure 1.  The DIPR automated cyber penetration system external system. 

Breaking the proposed system into a more detailed view, it is possible to see the 

data flows between the modules as depicted in Figure 2.  The DIPR Automated Cyber 

Penetration System includes four intelligence automation modules that transform cyber 

data from data created when initially sensing the cyber terrain using freeware programs. 
 3 



Data is then transformed into intelligence automation representations associated with the 

four modules of intelligence automation Detect, Identify, Predict, and React (DIPR), 

which are explained in the subsequent section.  Besides the DIPR modules, there are the 

Graphical User Interface (GUI), network and exploit data structures.  The data flow 

begins with an interface between the DIPR system and the cyber terrain that captures the 

data using various freeware programs (Metasploit, NMap, Xprobe2, etc.).  In order for 

the solution to scale and adapt to the disparate nature of the outputs of the various 

freeware programs, a translation step must occur.  Thus, the proposed system’s 

functionality includes the ability to transform these outputs into useable, interoperable 

middleware formats.  Such data structure formats are discussed in the subsequent section. 

 
Figure 2.  The proposed DIPR automated cyber penetration system. 

The graphical user interface serves as the command and control (C2) structure for 

the system.  As each module performs its specific automated task, the GUI automatically 

allows the next module to begin.  This is also where the operator has the option to 

manually select and specify exactly which tasks to accomplish against the chosen target. 
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For the sake of complexity management and storage reduction, only those features 

which are useful to exploits are retained. The Detect module creates a feature database 

per network entity, where a feature of a cyber-entity is considered a technical detail or 

piece of information about that host or network (open port, operating system, etc.) which 

later can be used to analyze that entity.  Detect features are represented and stored in data 

structures as part of the proposed DIPR Intelligence Automation Interoperability 

standards for data representation.  Similarly, the details required for each exploit are 

stored in their own data structure.  These data structures are maintained in a tree 

formatted Extensible Markup Language (XML) document. 

Each of these features is then processed within the Identify module to determine 

vulnerabilities, where an intelligent state can be identified based on a group of specific 

features occurring simultaneously.  If vulnerabilities exist, then that host’s data structure 

is updated accordingly.  Several fused features (i.e., intelligent states) occurring in a 

pattern within a period of time will result in then being classified as a behavior in the 

Predict module. 

After the state sequences are formed and vulnerability behaviors are classified, the 

predict module processes the inferred vulnerability behavior outcome by determining 

which exploits are available against the target.  Based on operator input and likelihood of 

success, a recommended cyber penetration attack is generated and added to the 

vulnerability data structure. 

When the inferred recommendation has been made, the react module uses the 

accumulated data to launch the penetration attack most likely to succeed against the 

target computer. Upon completion, it determines if the attack was successful and feeds 

that information back into the exploit data structure to update the expected probability of 

success for that attack against that vulnerability.  

4. DIPR Intelligence Automation Data Interoperability Standards  

The approach taken in this thesis is to generate a system of systems architecture 

for automating cyber penetration testing, which includes both system design and design 
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of data interoperability standards needed for the data transmitted between each 

intelligence module.  An overview of the latter is discussed in this section.   

The DIPR intelligence automation interoperability standards are used to represent 

data generated by the DIPR modules.  Specific XML schemas are proposed which map to 

the DIPR modules in order to represent data between them.  By implementing 

output/input of DIPR modules using XML files, the DIPR Automated Cyber Penetration 

system can scale with more freeware programs (cyber sensors) and more discovery/react 

tools.  

5. Implemented Proof-of-concept System 

Following the generated architecture, we implement the architecture in a proof-of-

concept system, including software implementations within a virtual network along with 

data interoperability standards implemented using the proposed structured file formats.  

An overview of the proof-of-concept system is provided in this section. 

The final proof-of-concept network was set up with a simple client server 

configuration.  Using freeware together with the backbone architecture, the system sets 

up a man-in-the-middle (MiTM) attack, poisoning the network and subsequently 

intercepting the data flowing between the target computer and the webserver.  For each 

success the system updates the exploit database probability of success for that penetration 

attack exploiting that vulnerability.  The starting status for the penetration attack machine 

was a blind entrance onto the network with all target IP addresses unknown.  There was 

one server, one penetration attack box (running a basic version of the architecture 

proposed in this thesis), and a client, which sent information back and forth across the 

network to a web server.  Overall success is determined by the positive integration of 

freeware programs for network discovery and attack as well as successful vulnerability 

analysis and attack prediction. 

Additionally, the GUI and XML schemas and file formats used are described in 

depth in Chapter III. 
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Ultimately, this system does not remove the need for an experienced analyst 

evaluating vulnerabilities or methods of exploiting these vulnerabilities.  It provides a 

new long lasting tool which reduces the time needed to manually test and exploit a 

network.  As operating systems and network traffic change, so will the need for tools 

used to properly identify key vulnerabilities in an exploited system, underscoring the 

importance of being able to add new tools as fluidly and rapidly as possible to the 

program.  This will benefit organizations in operational, tactical, strategic and 

acquisitions positions which have the need to determine, prioritize, and address network 

vulnerabilities of networks quickly and efficiently.  

B. STAKEHOLDER NEED 

The need for this thesis is categorized into the following perspectives: tactical, 

operational, strategic, and acquisition. 

1. Tactical Need 

From a tactical perspective, the Navy Red team deals primarily with gaining 

unauthorized access, testing for vulnerabilities and determining weaknesses of Navy 

networks with the intent of exposing problems for correction [6].  The Red team will 

benefit from this study by having an intelligent automated system reduce time spent 

manually gaining access and probing for weaknesses.  From the vulnerabilities exposed, 

the Navy Blue team, responsible for maintaining and hardening Navy networks against 

malicious penetration, can then endeavor to address and harden those vulnerabilities, 

making the likelihood of successful penetration attack from an outside force less likely [6]. 

2. Operational Need 

From an operational perspective, Tenth Fleet/Fleet Cyber Command, the Navy 

component of U.S. Cyber Command, is responsible for information security, computers 

and cryptologic concerns of the entire Navy, both at sea and on shore [7].  Using the 

information gathered by the Red Team, fleet-wide changes can then be implemented that 

ensure common vulnerabilities are not exploited.  These operational changes will have a 

large impact on fleet security.  
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3. Strategic Need 

From a strategic perspective, two organizations will benefit.  Firstly, the newly 

merged OPNAV N2 (Intelligence)/ N6 (Communications), which is a sister group to 

Tenth Fleet, is responsible for future planning for fleet cyber defense [8].  They will be 

able to take a long term look at current issues to create durable solutions to ensure that 

the navy Cyber community is not solely reactionary.  Knowledge of such an automated 

system will provide OPNAV N2/N6 the opportunity to steer related aspects of the science 

and technology (S&T) of this area in cyber by demonstrating the ability to quickly 

determine system vulnerabilities as an important component of future networks as a 

watchdog for emerging cyber vulnerabilities.  Secondly, USCYBERCOM will benefit 

from this tool as an aid in strategic cyber mission planning across all services [7]. 

4. Acquisitions Need 

From an acquisitions perspective, the Program Executive Office Command and 

Control, Communications, Computers, and Intelligence (PEO C4I and PMW 130), 

dedicated to providing products dedicated to information security and cyber defense for 

the fleet, along with other PMWs in PEO C4I, will be aided from the acquisitions 

approach to cyber systems in the Navy’s C4ISR systems [9]. 

C. BACKGROUND 

General background on intelligence automation, penetration testing, and field 

experience with penetration operators is provided in this section.  

1. Detect, Identify, Predict, React Intelligence Automation 

The intelligence automation model used in this thesis implements the DIPR 

automation model and has been used primarily in sensor based networks to generate useable, 

intelligent feedback from raw data provided by conventional sensors such as cameras [11].  It 

has been used once before for automating dynamic defensive cyber operations (DCO), which 

focused primarily on the cyber sensors and detection portions [2]. 
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a. Detect Subsystem 

Starting with a standard system there are basic sensors in the field feeding 

raw data back to a processing center running the DIPR program.  From here the raw 

sensor data is analyzed, and raw features are created in a Detect Subsystem.  As 

previously discussed, features are a low level classification created from raw data [11].  

b. Identify Subsystem 

From this point, the Identify Subsystem processes the features, recognizes 

when multiple features have occurred simultaneously and fuses them together, generating 

a state to which that data belongs.  Rules to implement the recognition must be developed 

ahead of time to determine what features are required but, ideally, it would be an 

adaptable learning system which could tailor itself over time [11]. 

c. Predict Subsystem 

The state generated by the Identify Subsystem is then input into the 

Predict Subsystem. These states are then mapped and generalized to create high-level 

classifiers which use the inputs of states, location and time to develop sequences or 

behaviors.  They are then classified as “normal” behaviors, “abnormal” behaviors and 

“unclassified” behaviors based on predefined or learned patterns.  These behaviors are 

then used to predict the future state of the system under observation and output to the 

React Subsystem [11].  

d. React Subsystem 

Once handed to the React Subsystem, these predicted behaviors are acted upon.  

The output of the React Subsystem is an action appropriate to the predicted behavior 

(warnings, alarms, etc.) [11].  

In general, the DIPR system is well-suited for application to the cyber field.  In 

Chapter II, more specific adaptations are addressed as to how the sensors and terrain are 

described and mapped to work in this model.   
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2. Cyber Penetration Testing 

Cyber Penetration testing is generally the action of a system administrator or 

software engineer deliberately searching for vulnerabilities and determining what 

information can be determined about their system.  Manually performing this process is 

extremely time consuming and, generally, only results in determining that those specific 

tests were unable to find any vulnerabilities.  To ease the burden of this process, many 

suites and programs have been developed to automatically perform a subset of some of 

those tasks, but in certain cases can these programs be linked together to form a more 

robust system. 

Penetration testing both during the software development process as well as at the 

final production point is crucial to ensuring an end product with limited vulnerabilities.  

A concern in particular for the software development industry is the trade-off between 

manual and automatic penetration testing.  While manual testing is perhaps more 

thorough, it is vastly more time and processing power intensive, and basic automation has 

the limitation of only finding the specific vulnerabilities which it is programmed to find.   

Penetration testing in general is limited in its efficacy due to the fact that it does not 

prove that a system does not have vulnerabilities, simply that it does not have any of the 

vulnerabilities that were specifically searched for.  In many cases this might be sufficient 

for the first release with any subsequent problems being addressed in patches.  To this 

end, several freeware programs have been developed in order to minimize the amount of 

time taken to manually penetration test a network.  In this thesis we focus on well-known 

freeware programs.  All have the ability to both scan and attack, and both aspects are 

employed in the final integration of the system.  

The specific people who are interested in using the DIPR Automated Cyber 

Penetration System likely come from a fairly specialized niche of hackers.  The term 

“hacker” in the context of this thesis refers to someone who can gain access to a 

computer network without using the standard methods defined by the organization’s 

policy.  Hackers have a wide variety of motivations for accessing a system and what they 

will do if successful.  As new technology and software enters the market, new flaws and 
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security vulnerabilities similarly emerge.  The market for finding and fixing these flaws 

has grown in proportion to how prevalent technology has become.  

The first type of person who would be intent on exploiting these flaws is a “black 

hat” hacker.  Black hatters enter into a system without authorization and steal information 

or damage the system in some way [12].  They can be anyone from a script kiddie to an 

elite corporate hacker looking for secrets.  The tools they use could range from freeware 

to personally written and scripted code tailored to enter into a system [12].  Black hatters 

are what most organizations fear and, therefore, expend considerable resources ensuring 

that they are either adequately protected or repairing damage after realizing that they 

were not. 

The second type, on the opposite side of the spectrum, would be the “white hat” 

or “ethical hacker.” They are typically hired by a company to look for flaws in the system 

and determine what vulnerabilities exist [12].  They use any tools at their disposal to 

attempt to break into the system the same way a black hatter does so that they may find as 

many flaws as possible and help the company correct them or guard against them [12].  

This system in particular can help them use a wide variety of freeware tools to quickly, in 

various combinations, launch attacks and determine which have the highest chances of 

success.  Because they are being paid by the company for results, it is most profitable to 

execute as many attacks and avenues as rapidly as possible.   However, this brings up one 

of the primary flaws in cyber security: the entire process is one of exclusion.  A tool or 

person can prove that the method that they used does not work, but it is impossible to 

prove that there exists no method which could work.  It is a fundamental flaw and is one 

of the reasons that well planned security from the initial development of every program 

or network is essential.  Automated tools will not fix this flaw but can greatly increase the 

number of common attacks launched using the most common tools directed against a 

network in various combinations. 

The third type falls somewhere in between the two extremes and, aptly, is called a 

“grey hat” hacker.  These are typically people that illegally enter a network and find 

flaws in the system but, instead of exploiting or damaging the network, inform the 

company of the issue so that they may correct it [12].  Motivations for this type of person 
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are varied and unpredictable.  This system could also be useful for grey hatters with the 

added benefit of not leaving any additional footprints outside of what is normal for 

freeware programs being used manually.  For instance, if a hacker were to specifically 

tailor code to break into a bank’s computer network, they leave a specific signature 

behind that may link their code to them and any other instances of that code.  However, 

with an automated system utilizing only freeware programs, it is more difficult to discern 

a specific person manually running the programs while still providing the added benefit 

of decreased time. 

3. Field Experience with Cyber Penetration Operators 

During the 2012 Joint Interagency Field Experimentation (JIFX) held at Camp 

Roberts in February, the author met with several of the Navy cyber red team members.  

These people were tasked with finding vulnerabilities of specific projects using typical 

freeware programs available to the general public.  In some cases they knew well in 

advance what program they would be acting against and, in others, they were told with 

little or no time to prepare.  When given sufficient lead time for research, they employed 

a flow chart (as seen in Figure 3) or checklist to find as much information about the 

system beforehand as possible.  This resulted in consistently  documentable and traceable 

results which lent itself to better corrections by the programs security team.  They 

expressed an interest in automated tools to easily combine freeware programs and to help 

more quickly move step by step through the process.  Throughout the exercise they 

typically used more than six different programs to find and utilize information about the 

target system and to determine the most successful avenue of approach.  From this initial 

assessment, they would use a series of other freeware programs to launch attacks.  In the 

case of new programs where little prior knowledge was available, this process was 

conducted employing either trial and error or brute force methods.   
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Assessment Scenario

UNCLASSIFIED

Scanning

Footprint
Enumeration

Gaining 
Access

Escalating
Privilege

Pilfering

Covering
Tracks

Creating
Backdoors

Denial of
Service

Annotate
Actions taken

Remove tool
residue

Open source search to identify 
target address range and named 
servers

Target assessment, looking for 
avenues of entry

Using knowledge gained to 
intrude further (more risky for 
hacker)

Use data gathered to attempt to 
access the target

Needed only if user access was 
achieved

Information gathering, both local 
and within trusted resources

Once ownership of target is 
secured, masking the hackers 
presence will prevent detection

Inserting a backdoor in a fully 
compromised system will allow 
re-entry at anytime-undetected

If unsuccessful in gaining access, 
disable target completely

Final team actions 
will be to clean all 
software used to 
exploit target off of 
targeted systems 
and fully document 
the assessment for 
the customer

Social 
Engineering

Identification of systems through 
other than electronic means

 
Figure 3.  Assessment scenario flow chart. From [13]. 
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Ultimately, this system will benefit the Navy by assisting people in red team roles 

by quickly assessing and determining weaknesses in new programs prior to them being 

pushed into the Fleet.   

D. LITERATURE SEARCH 

Several other efforts to automate cyber penetration are described and middleware 

implementation recommendations are made in this section. 

1. Penetration Testing 

The paper by J.P. McDermott, “Attack Net Penetration Testing,” discusses 

various methodologies of finding, approaching, and eliminating programming flaws [10].  

In the case of this thesis, the intent is only to find and exploit flaws, but the process 

remains the same.  The “flaw hypothesis approach” breaks down the process into a series 

of steps: 1. define goals, 2. background research, 3. generate hypothetical vulnerabilities, 

4. confirm vulnerabilities, 5. generalize flaws, 6. eliminate flaws [10].  For the purpose of 

this thesis, we begin at step six of this approach, maximize the flaw and then exploit the 

flaw. McDermott’s view of using an attack net for a MiTM attack is consistent with the 

structure of this thesis’; although, he pursued a different end goal.  The concept of an 

attack net is each previous step must be completed to unlock access to the following step, 

which in turn allows access to the next step and so forth to the goal. This is modeled by 

portraying intermediate and final objectives as places or nodes on a map, commands and 

inputs as transitions between these nodes, and using “tokens” as placeholders for the 

current position in the map [10]. In an ideal situation, it is possible to either find a simpler 

path to the goal or make it possible that, on a second attack, the path is left open for 

further exploitation using this methodology.  

2. XML as Middleware 

Choosing an efficient, scalable method for storing information is the focus of the 

article “XML Data Stores: Emerging Practices” [14]. Because of XML’s ease of use, 

interoperability and reliability, it has increasingly become the data store of choice for the 

programming industry [14].  The implementation of these XML data stores can vary from 
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application to application, and there are a variety of benefits to the various methods.  

Options discussed were: ASCII files stored in a management system as objects, relational 

database management system (DBMS) (Tables), object relational DBMS (tables and 

objects), native XML, and directory servers [14].  Given the various pros and cons of the 

preceding options, using a native XML has the qualities of scalability, reliability and data 

access speed. Native XML is defined as a data store that uses XML as its fundamental 

storage unit, uses a logical model for the XML itself, and requires a specific physical 

storage method [14]. Information can then be stored either in a tree format or a collection 

format.  Both are valid methods and best practice is determined by the needs of the 

application.  A tree stores the data in a parent child configuration, whereas the collection 

method groups them in larger sets using either a typed schema [6] or as untyped unrelated 

XML documents [14].  The use of a Native XML inherent to the application as well as a 

tree storage method was the method utilized in this thesis. 

3. San Jose State University Automated Penetration System 

The thesis Automated Penetration Testing by Neha Samant examines the need for 

automated penetration testing to reduce the time and cost of manually performing the 

penetration testing [15].  By performing penetration testing early and often in either the 

network development or software development stages, it is easier and less  

time-consuming to identify or correct issues as opposed to waiting until the system is 

finalized [15]. The paper developed a web-based penetration system to create a variety of 

user friendly denial of service (DoS) attacks.  The application was successful in 

accomplishing basic DoS attacks using three protocols: hypertext transfer protocol 

(HTTP), session initiation protocol (SIP) and transmission control protocol/Internet 

protocol (TCP/IP).  For each protocol two to twenty attacks were available. The user 

friendly interface takes the input of the IP address to be attacked and a port number to 

direct that attack.  The application successfully completed these attacks with a user 

friendly interface that simplified penetration testing as opposed to performing the attacks 

manually. 
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Weaknesses in this method are limited scalability in the future and the continuing 

need to use external programs to gather information prior to attack.  With no previously 

established architecture, the application development is constrained and possibly limited 

in efficiency.  The lack of integration with a port or IP discovery program reduces the 

scope and degree of intelligent automation of the system.  The focus of this thesis is on 

creating an architecture that can be put in place prior to development of the web 

application to ensure long term scalability as well as integrating programs to fully 

automate the system.   

4. HackSim System 

Another implementation of penetration testing called HackSim was created to 

automate penetration testing for remote buffer overflow vulnerabilities [16].  By 

developing an architecture that focused on discovery and exploit (similar to this thesis’s 

discovery and attack programs), they created a modular approach which focused on a 

user-friendly interface, automation and safety for the target program. Designed to work 

either in a white box (tester has a priori knowledge of the system) or black box (tester has 

no a priori knowledge of the system) environment testing, the intent was to sanitize code 

used for penetration, ensuring that while the system was tested it would not be damaged 

and no backdoors were inadvertently left in place.  This allowed the system or network to 

be tested while still in operation, a situation which frequently occurs in the commercial 

world after a new program or function has been installed on the network.  The system 

was successfully implemented against Solaris and Windows systems.   

Hacksim does have the ability to be expanded and scaled to larger 

implementations but has to be manually coded [16].  This limits how advanced and time 

relevant this framework would be long term.  In this specific framework, there was little 

reason for standardization of the implementation of either the discovery or exploit 

modules.  However, this could result in difficulties in a more advanced implementation. 

In addition to similarly working to automate penetration testing, the intent of this 

thesis is to focus on implementing the intelligence between the discovery and exploit 

steps. 
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5. Solar Sword System 

A third implementation, named Solar Sword, is the closest to the scope of this 
thesis [17]. Using an automated, modular system they developed a distributed network of 
secure information gathering platforms to feedback information to a central command 
and control center [17]. The three focus areas for this implementation are automation, 
distribution and immunity from external attacks.  The approach uses the distributed 
program on a LiveDVD system to run programs to determine information about the 
network and send that information back to the central station [17].  The central station 
processes the information, determines the best course of attack based on possible 
vulnerabilities and generates a template for attack which is disseminated to the distributed 
testing clients.  After retrieval the clients launch the attacks and generate reports about 
the success of the attack.  These are then sent back to the central control station for 
manual analysis [17].   

This method uses a standardized approach to its attack template as well as 
utilizing the information sent back from the distributed clients, which provided more 
information from a wider range of vantage points.  This allows for error checking 
gathered data and for potentially harvesting more information depending on distributed 
client vantage point [17].  Additionally, its use of automation and intelligence to parse the 
received information and process it through either an attack net or attack graph allows it 
to adapt to a previously unknown network and determine the best course of testing.  The 
implementation was successful in achieving its goals and future work was determined to 
be necessary in the areas of increasing the automation and intelligence in its attack graph 
and securing the communications between the central control center and its distributed 
clients [17].  Finally, they concluded that further work needed to be done to make the 
implementation more robust.  In Solar Sword, an approach to designing a methodology 
which was also scalable and easily upgradeable to new exploits is important and 
achievable but is not a primary focus for Solar Sword [17]. 

A different approach is taken in this thesis by emphasizing modularity in order to 
change to a rapidly developing environment while focusing on using premade freeware 
programs to do the majority of the work for the penetration tester.  The use of the 
freeware programs frees much of the burden of relying on native scripts and exploits to 
test the system. 
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6. Conclusions from Literature Search 

Based on the above literature search, the focus of this thesis is on establishing a 

DIPR based architecture using a methodical approach to flaw recognition and 

exploitation.  Using XML as the data store format, we integrate disparate freeware 

programs into a scalable system which allows future expansion and reliability.  

A comparison of each reviewed implementation as compared to each of our focus 

areas is illustrated in Table 1. Primarily, these areas are scalability, standardization and 

intelligence. In the context of this thesis, scalability refers to the ability of the 

implementation to easily adapt to additional growth of the network or of desired exploits.  

This can typically be seen by a modular architecture but is not limited to this. Manually 

coding or developing each vulnerability can also significantly limit the scalability due to 

the time and cost associated with manual coding and detecting.  To a certain extent, 

avoiding manual coding is impossible, but steps such as standardization and intelligence 

can reduce this work.  Standardization refers to making any inputs to modules used or 

information gained to classify vulnerabilities as having similar classifications for their 

attributes. Intelligence refers to the ability to mesh several details or vulnerabilities in 

order to recognize a new and different vulnerability. This can also refer to the ability to 

self-recognize or adapt to given inputs. 

Table 1.   Comparison of literature review solutions to proposed DIPR solution. 
 Scalability Standardization Intelligence 

San Jose State University Implementation  X  

HackSim X   

Solar Sword  X X 

Proposed DIPR Implementation X X X 

 

Focus areas lacking from the other implementations is the concept of intelligently 

automating the system to allow it to recognize multiple aspects and identify them as a 

 18 



more advanced vulnerability.  Standardization was not necessary in all of the 

implementations but was not discussed as a key point either.  Each implementation had a 

unique approach, and all were successful in their stated goals but a more structured, well 

defined architecture can assist in the automation process. 

E. THESIS STRUCTURE 

The stakeholder need driving this thesis was articulated in Chapter I followed by 

the general background required for this thesis.  A literature search on other efforts in 

automating penetration testing concluded the chapter.  The recommended architecture of 

the DIPR Automated Cyber Penetration System are described in Chapter II.  The 

software implementation for the proof-of-concept system of the proposed DIPR 

Automated Cyber Penetration System and discussion of the results of that 

implementation are described in Chapter III.  Finally, recommended improvements to the 

proof-of-concept, future work and conclusions are provided in Chapter IV. 

F. SUMMARY 

A general overview of the need to develop a scalable, flexible architecture for the 

automation of network penetration and exploitation was presented in this chapter. Detail 

on the overall thesis structure, stakeholder needs, background behind the chosen 

architecture and a summary of additional literature in this area was provided.  Further 

details on the development of this architecture are addressed in Chapter II. 
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II. A SYSTEMS APPROACH TO INTELLIGENCE AUTOMATED 
CYBER PENETRATION  

The proposed methodology for automatic penetration testing and exploitation 

management within a cyber system of systems framework is the focus of this chapter.  

The systems framework is depicted in Figure 4. There are two external systems to the 

DIPR Automated Cyber Penetration System: the cyber terrain that is to be penetrated and 

the operator.  The external systems, the DIPR Automated Cyber Penetration System, and 

the information flows between each system are described in detail in the following 

sections. 

  
Figure 4.  DIPR automated cyber penetration model external systems. 

A. CYBER TERRAIN  

With most cyber scenarios, the primary issue is to clearly delineate where the 

terrain of the problem begins and ends.  In this thesis that boundary is set at the outputs of 

our sensors (freeware programs which are discussed more in depth further on) which feed 

into our system.  This clearly establishes that the sensors themselves are not integrated 

into the system (with the exception of input commands) but instead only the outputs must 

be manipulated to conform.  This ensures that we prevent creating a fingerprint, allowing 

an outside observer to realize the system is automated vice a person manually performing 

the operations.  The assumption is that the attack computer has a physical connection to 
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the target network.  For this thesis, cyber terrain is broken into two separate categories: 

network-based terrain and host-based terrain [3].  Both are ideally utilized, but only the 

network-based terrain is featured in the proof-of-concept. 

1. Network-based Cyber Terrain 

Network-based cyber terrain can be considered any physical connection to a 

device on the network (node) as well as each network connection combination between 

any two nodes on the network (edges) [3].  To gather information in a network-based 

cyber terrain, our system sends out data in order to process and receive data to determine 

features or behaviors of the target system. Examples of network terrain include 

computers, routers, storage systems and the physical connections between them which 

make up the network itself. Knowledge about the terrain is limited to that which can be 

gathered by our sensors. 

2. Host-based Cyber Terrain 

Host-based cyber terrain differs from network-based by how the information is 

obtained by our system.  In a host-based cyber terrain, the target computer, with the 

implementation of a previously installed back door, processes and determines features 

and behaviors itself and send that information to our system. Data gathered by the host-

based terrain can be considered all the information regarding one device on the network 

(the internals of the device) which does not normally get transmitted between two nodes 

on the network [3].  Examples of information in a host-based cyber terrain include the 

system logs, the number of processes running, and the CPU utilization on a given 

computer.   

Unlike the network-based cyber terrain, the host-based requires an advanced 

implementation where a program or malware created by one of our freeware programs 

has left a backdoor in place to later retrieve information.  Here it is assumed that the 

target computer is sending information and establishing a connection without being 

prompted by the attack computer. 
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B. OPERATOR 

Automation of a penetration system, regardless of how advanced or well 

implemented, never completely alleviates the need for a human analyst to help find new 

vulnerabilities.  The system is only able to automate at the level to which it is 

programmed. Additionally, in order to ensure that the correct target is chosen and acted 

against, it is always wise to ensure that a human component can be inserted into the 

process.  In this thesis, the operator has several roles as described subsequently. 

1. Operator Inputs 

The involvement of the operator for this architecture is discussed in this section.  

Both the expectations for initial exploit development as well as the expected received 

inputs and outputs are explained. 

a. Initial Exploit Development 

Research into system vulnerabilities is the first step in the process for 

exploiting a system or network.  After a program or system is launched, the most likely 

source of bugs or flaws is the end-users.  Extensive time and development is directed 

towards debugging programs before they are released into the market, but invariably, 

there are a few issues that still crop up.  Those users who find the issues may provide this 

information to the company, exploit the flaws themselves, or just post the information on 

various blogs or message boards.  As a result, it is valuable for a tester to regularly peruse 

these boards and look for new exploits or flaws which may further provide access to a 

system.  In this thesis it is expected that an operator or analyst populates a database ahead 

of time with possible vulnerabilities with as many details as possible about a system that 

the vulnerability applies to and what the expected result is for those actions.  The validity 

of this database is paramount in executing a successful automated attack.   

b. Assessment Inputs 

Determining and tracking the success or failure of an exploit on a system 

with a particular vulnerability is essential to correctly choosing which exploits to utilize 

in future cases.  For this thesis this information is provided by the user.  Further 
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development on automating methods of effectiveness aids in removing this input, but 

some human interaction should be involved to monitor the quality of the attack.  

2. Outputs to the Operator 

Primarily, the outputs for the system are the status of what step of the process the 

system is performing so that the user can choose to monitor outputs.  This is to provide 

situational awareness of the status of the automated system to the operator.  Additional 

monitoring of the network is expected through a program such as Wireshark or tcpdump 

to view the effectiveness of a network based attack.  

C. DIPR AUTOMATED CYBER PENETRATION SYSTEM 

A general description of how each component is structured, followed by a more 

in-depth look at the data flow within each module and from one module to another, is 

discussed in this section. 

1. Freeware Programs (Cyber Sensors) 

The DIPR architecture has primarily been implemented in the automation of 

standard physical sensors feeding back to artificial intelligence software. In this system 

we are moving from the physical environment to the cyber environment. As such, the 

definitions of each component change slightly; although, the intended goal remains the 

same. 

The DIPR cyber sensors are considered to be the probes sent from the programs 

used by the penetration software.  They represent the interface that our attack computer 

has with the target network.  Just as there are two types of cyber terrain, there are two 

categories of cyber sensors.  Those determining information about network based 

information and those that interact with implants on network computers (to extract 

information about the host) which can send back information.  For this thesis, host based 

sensors are not implemented but should be mentioned as another crucial sensor in a fully 

fleshed out implementation.  Network based sensor data can be thought of as the data 

being sent from the attack computer to elicit a response in the target computer.  For 
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example, packet captures from TCP or ICMP probes are sensor data from the network-

based cyber sensors NMAP and XProbe2, respectively. 

Additionally, further delineation must be made between the actual roles of each 

program.  Penetration testing can be seen as two separate functions.  The first function is 

a discovery function, responsible for exfiltrating information about the network.  Second 

is an attack function which is responsible for disrupting, intercepting or denying some 

service.  Programs used are associated with these functions for use in this system, and it 

is possible that a single freeware program can serve in either role.  A more through 

discussion of specific programs is addressed in Chapter III. 

a. Discovery Programs 

Discovery programs can also later double in the React module as attack 

programs depending on the robustness of the freeware program.  In general, a discovery 

program is any program that can elicit information from the network.  This can also be 

either honed down in the event that the target IP address is known (i.e., instead of 

scanning the entire network it specifically targets a single computer) or bypassed entirely 

if enough information is already known on the target. 

b. Attack Programs 

Attack programs are any type of freeware that take inputs and then launch 

a specific attack against the network.    

c. Requirements for Freeware Programs 

To make an architecture which is scalable, limitations on what the system 

can or cannot accept in its freeware program has to be balanced with ensuring that the full 

range of programs are utilized.  Current network toolboxes such as Metasploit are readily 

available and easy to use. Developing Metasploit plugins that allow toolboxes to interact 

with this architecture is necessary but should be done cautiously such that the final output 

does not look automated when processed through our system. 
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Because of the requirement to have systems that interact directly with our 

system, any discovery program used must have a command line interface available and 

output that can be piped or parsed such that it can be converted into a standardized XML 

format.  Any attack program used only needs to have command line input; although, a 

parseable output is useful for determining success. 

2. DIPR Intelligence Automation Interoperability Standards 

Because XML is both ubiquitous as well as extremely versatile from both a 

human readable and machine readable perspective, it has been chosen for this thesis as 

the primary method of data storage in all applications.  The standardization of XML 

fields allows for synchronization of data between disparate programs, which increases the 

information available about a particular network while reducing the redundant 

information taking up storage. 

a. Network Entity XML 

The XML file created which holds all data pertaining to a specific entity 

on the network (i.e., computer, router, storage device, connection, etc.) is referred to as a 

network entity XML.  An example is provided in Figure 5. 

 
Figure 5.  Example network entity XML. 
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b. Exploit XML 

Prior to beginning the DIPR process, an exploit database must be created 

associating vulnerabilities with possible exploits that can take advantage of these 

vulnerabilities.  For this thesis this database is stored as an XML file and referred to as 

the exploit XML.  An example exploit XML is provided in Figure 6. 

 
Figure 6.  Example exploit XML. 
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3. GUI (Command and Control Interface) 

A robust GUI is necessary in order to ensure that all of the options available to the 

individual freeware programs are still accessible in the integrated system.  Additionally, 

this is where most of the hand over and command and control occur.  Having a GUI 

which still allows the operator to be inserted at any point in the process is also desirable 

both from a verification standpoint as well as to ensure no actions are taken without 

understanding the consequences.  The data flow for the GUI is shown in Figure 7.  It 

interfaces directly with the four modules and the operator.  To maintain modularity, the 

GUI should have no connections to external programs.  

 

 
Figure 7.  GUI data flow. 

4. Detect Identify Predict React (DIPR) Modules 

The tasks assigned to each module and the separation of control for each module 

is the focus of this section.  An overall flow diagram for the modules as a whole is 

provided in Figure 8, and the flows for the individual modules are shown in subsequent 

sections. 
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Figure 8.  DIPR automated cyber penetration system. 

a. Detect Module 

The detect module has four primary tasks: 

• Run the discovery program 

• Parse the output of the discovery program. 

• Create an XML document per network entity 

• Make/update a master network entity list  
As shown in Figure 7, the flow begins with the GUI calling on the Detect 

module with either the name of the specific requested discovery program or with no 
input, allowing the module to use the default.  Once the program is run, the output is 
parsed to gather only the necessary features.  Necessary features are determined by the 
vulnerabilities stated in the exploit XML.  This parsed information is then used to create a 
standardized XML file for each network entry with additional information of MAC 
address, timestamp and program used to gather the information.  Finally, the Detect 
module creates a master list of all network entities for faster reference in follow on 
modules. When complete, the module returns a signal to the GUI that it has finished and 
the next module can take over. 
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Figure 9.  Detect module flow. 

b. Identify Module 

The Identify module similarly has multiple primary tasks: 

• Pull features needed for a state from exploit XML file (setting up 
the query) 

• Open each network XML and test to see if the query is true 

• Update network XML to indicate that a state exists and what 
vulnerability it corresponds to. 

When the GUI calls on the Identify module, it first looks to the exploit 

XML file to determine what features are needed to be combined in order to make a state.  

This can also be seen as building the queries.  Then it applies those queries to each of the 

network entities.  For instance if “a” and “b” features are needed for state 0 with a 

vulnerability “c” (this is the query) and the network entity has both “a” and “b”, then the 

XML is updated that that entity is in state 0 with vulnerability “c.” State 0 is used to 

denote that the entity has a vulnerability that can be exploited.  A State 1 or higher 

indicator can occur in the event that a backdoor has been left on the machine from a 

previous engagement.  The difference between these two is what allows for further 

determination of behavior patterns for that entity.  Finally, it returns to the GUI that it has 

completed successfully. This flow can be seen in Figure 10. 

 30 



 
Figure 10.  Identify module flow. 

c. Predict Module 

The tasks for the Predict module are: 

• Find all possible exploits for each vulnerability 

• Check each network entity for the existence of State 0 

• Calculate the probability for each type of exploit available for that 
vulnerability 

• Determine if additional information or vulnerabilities are required 
for that type of attack 

• Update network entity XML with recommendation and 
requirements for the exploit with the highest probability 

In Figure 11, we can see the flow of information in the Predict module.  

When triggered by the GUI, the Predict module takes the exploit XML file and reads in 

the possible exploits for each type of vulnerability.  Then it calculates the probability of 

success for each type of attack.  Probability can be dependent on different variables such 

as whether the desired response is the most likely to succeed, produce the desired 

outcome (MiTM or DoS) or least likely to be detected. The Predict module should have 

the ability to discern which exploit fits the request best.  The module should then look 

 

through all the entity XMLs and find which have a State 0 and update them with the 

recommended exploits for that vulnerability and any additional requirements. Finally, it 

should inform the GUI that it has completed its tasks. 
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Figure 11.  Predict module flow. 

d. React Module 

The tasks for the React module are: 

• Inspect all network entity XMLs and find the exploit with the 
highest probability. 

• If additional requirements are needed, find them. 

• Launch attack using all available information. 

• Update the network entity XML with a timestamp of the attack. 

• Update the exploit XML with Success or failure. 

In Figure 10, the flows for the React module are shown.  It begins with the 

GUI starting the process, triggering the module to look at all of the entity XMLs to 

determine the exploit with the highest probability of attack.  The returned exploit may 

then have another requirement (another vulnerability or specific piece of information).  In 

that case the module checks to see if that additional condition exists.  If it does then it 

launches the chosen attack using the selected attack program.  If it does not then it repeats 

the search process and chooses the exploit with the next highest probability of success.  

After the attack is launched, it updates the entity XML and the exploit XML to reflect the 

success or failure of the attack. This data flow is shown by Figure 12. 
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Figure 12.  React module flows. 

D. CONCLUSIONS 

Conclusions on the systems approach to intelligence automated cyber penetration 

testing were provided and two important points that were considered while making the 

architectural choices to utilize the DIPR process specifically and freeware programs in 

general are identified in this section.  

1. Desire for Stealth 

One of the frustrations when trying to reverse engineer an attack is determining 

who sent the code that caused the damage to your system.  One method a grey hatter can 

use to avoid identification or finger-printing of themselves is to only use freeware or 

publicly owned code.  This has two consequences: ease of use which allows the operator 

to spend less time specifically tailoring code and “recreating the wheel” for a particular 

exploit and, more importantly, it makes it marginally harder to connect that particular 

version of the code with the specific operator.    

2. Growth and Standardization 

Plug and play programming driven by the use of XML is a focal point for 

determining a recommended method for formatting and standardizing the outputs of 

individual programs.  Because each new program on the market is unlikely to use a 
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similar output method, there needs to be a standardized process that allows easy 

integration with new freeware programs.  Determination of specific events and features 

are stored and expandable as more utilities are used and advanced vulnerabilities are 

identified.  Ease of access and a small footprint assists in maximizing the computational 

speed of the program and allows for faster real time execution in determining the best 

exploit for deployment. 

3. Summary 

An overall methodology for implementing the DIPR system was proposed and the 

needs of the specific components were addressed in this chapter. The expected data flows 

externally between the terrain, operator and the DIPR system and the internal data flows 

between each of these sections were discussed.  Proof-of-concept considerations and 

implementations are further addressed in Chapter III. 
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III. PROOF-OF-CONCEPT 

The overall creation and development of the proof-of-concept are discussed in 

this chapter.  The methods used to choose freeware, determine the network the proof-of-

concept was built upon and how each module was designed to work as an overall whole 

as well the results of each step of the proof-of-concept are covered. 

A. FREEWARE SELECTION 

The process for selecting the freeware programs that are used in the development 

of the proof-of-concept are discussed in this section. 

1. Discovery Programs 

A discovery program is any program that can elicit information from the network.  

This can be either honed down in the event that the target IP address is known (i.e., 

instead of scanning the entire network it specifically targets a single computer) or 

bypassed entirely if enough information is already known about the target. Requirements 

for these programs are that they have command line input as well as a form of parseable 

output. Possible choices are discussed in the following sections.  There are many others 

that are available, but these present a general list. 

a. Network Mapping (NMap) 

NMap is a small freeware program which uses erroneous TCP packets 

with various flags set to attempt to fingerprint the operating system (OS) of the targeted 

computer.  The OS determination is made based on the types of replies the target system 

returns from each erroneous packet.  From these replies, an estimate is made as to what 

OS is most likely running on the target system [18].  When the version of the target 

system is known, we have achieved the first step in determining what potential 

vulnerabilities might be available.  A limitation of NMap is that it is relatively “noisy”, 

and the erroneous packets can likely be noticed by an intrusion detection system (IDS) or 

system administrator.  Possible methods of avoiding this are to provide a dummy IP 

address or to use a less obtrusive program.  In the case of white hat attacks, this is 
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unnecessary, but in a situation where stealth is required, this could lead to detection.  

Additionally, NMap can be used for basic network mapping, which is important when the 

target IP address is not known from the beginning. 

NMAP was specifically used by the proof-of-concept as the discovery program.   

b. Ettercap 

Ettercap has the ability to actively and passively gather information using 

a MiTM attack [19] but typically outputs less information while setting up an attack and 

so is not considered ideal as a discovery program.  It was, however, used as a final attack 

program. 

c. Metasploit 

Another well-known example of both a discovery as well as an attack 

program is Metasploit [20].  Metasploit has a well-developed interface with many 

services to both test for vulnerabilities in addition to exploiting the vulnerabilities once 

found.  The program was created in 2003 by HD Moore and has grown in recent years to 

be one of the most hardy scanning and exploitation tools on the market [20].  Metasploit 

streamlines many of the day-to-day penetration steps and allows them to be viewed in a 

flow like GUI format.  Many of the basic steps can be understood and followed by a basic 

user, but more advanced tools must be fully understood to achieve the full potential of the 

program.  The intent behind this thesis is not to replicate a less robust version of this 

program but to propose an architecture such that any program may interface with the 

primary program without needing to specifically become an add on to the main program. 

This allows for the integration of any new tool that is on the market regardless of the 

code’s source. 

2. Attack Programs 

Attack programs are required to take an input and launch a specific attack against 

the target network or computer.  Depending on the desire of the operator, they can have a 

wide variety of results. 
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a. Ettercap 

Ettercap is a simple freeware program that is supported in Linux and 

Windows up to XP.  It is primarily used to launch a MiTM attack using ARP poisoning 

and ICMP poisoning [19]. Its inputs can be virtually any combination of IP address, 

MAC Address and ports; that allows it to be easily tailored to specific needs. Its output 

does not provide much parseable information, but in conjunction with tcpdump or 

Wireshark, intercepted packets can be captured and reviewed.  For the proof-of-concept, 

Ettercap was used primarily for its simplicity in command line inputs as well as the 

variety of input combinations available. 

b. Cain & Able 

Cain & Able is a freeware program primarily used to gather passwords 

and map networks.  Its methodology ranges from brute force or dictionary attacks to 

more advanced decoding and descrambling.  Its most recent version can also be used for 

ARP poisoning a network and MiTM attacks [21].  Cain & Able was not used the in the 

proof-of-concept only because in the Windows environment it has limited command line 

input.  Using an implementation of the architecture in Linux would make the Cain and 

Able another valid program to consider integrating. 

c. Denial of Service (DoS) Attack 

While not implemented in the proof-of-concept, a DoS attack is one of the 

most simple to implement and difficult to defend against attacks.  It can be implemented 

using numerous methods, but the most common is to flood a system with some form of 

packet and overwhelm the server or even the network itself [22].  One end goal for this 

attack is to clog the network to the point where services are inoperable or time latent.  

3. Conclusions on Freeware Programs 

For both their simplicity as well as their robustness, NMap and Ettercap were 

implemented in this proof-of-concept.  Overall success or failure needs to be verified via 

Wireshark or tcpdump and input by the operator, but the validity of the architecture holds 

even with this limitation.  
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B. NETWORK ARCHITECTURE 

A detailed description of the network designed to test the proof-of-concept is 

given in the following section.  This includes a description of topology, software and 

computer specifications. 

1. Topology 

The network was designed in a virtual environment and consisted of three virtual 

machines (VM) and a network data storage device.  A visual of the network topology is 

provided in Figure 13.   

 
Figure 13.  Network topology. 

2. Software and Computer Specifications 

The “Attack Box,” or the machine running the proof-of-concept system, was 

named Panthro and runs Windows XP with the necessary freeware programs and python 

installed.  

The “Target” machine was similarly running Windows XP with only Wireshark 

and Internet Explorer installed.  Internet Explorer was used to generate traffic to ensure 

the MiTM attack was operating correctly and Wireshark for troubleshooting and to 

inspect the packets at the receiving end. 
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The “Webserver” machine ran  an Apache webserver and hosted the webpage that 

the target computer accesses.   

The terastation was the only non-virtual component of the network and was used 

to back up the virtual machines. 

Python was chosen to write all of the code for the proof-of-concept because it is a 

high level programming language with the ability to process command line input while 

handling parsing of text files.  It also has inherent toolboxes for both GUI development as 

well as XML manipulation. 

C. DIPR INTELLIGENCE AUTOMATION STANDARDS USING XML 
FILES 

The components and details that went into developing the standardization used to 

create the exploit and network entity XMLs are discussed in this section.  Standardization 

is essential in allowing multiple disparate DIPR programs interface efficiently so that 

they may be processed by the architecture. 

1. Exploit XML 

An example of vulnerability in the exploits XML document is depicted in Figure 

14.  The vulnerability field names the vulnerability in this example “A”.  This is the 

primary method for labeling the various vulnerabilities that could be found. The naming 

convention can be substituted for a more complex or descriptive method but increased 

complexity makes it more likely for error while integrating several programs seamlessly.  

The aspect field determines the general attribute that is being searched for (i.e., operating 

system, open port, IP address, etc.) and should be directly related to information that can 

be provided by a discovery program.  The spec field refers to the specific value that 

should be held by the aspect field.  Multiple spec and aspect fields are possible for any 

vulnerability. Each aspect requires at least one spec value be true for the vulnerability to 

be considered true.  Alternately, it is an “and” operator for aspects and an “or” operator 

for specs. 
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Vulnerability A (shown in Figure 14) specifically looks for a Linux OS with an 

open port 80 (typically this indicates a web server).  Two exploits are available to use 

against this vulnerability:  A MiTM attack using Ettercap and a MoTS attack using Cain 

& Able.  These were chosen as examples, and any combination of integrated programs 

could have been employed.  As Cain & Able was not integrated into the system, the 

probability is initially set lower than that of the MiTM attack to ensure it was not 

selected.  To achieve the MiTM attack, another computer connecting to the webserver is 

required so the required field indicates the need for vulnerability B. 

Vulnerability B (not shown but included in Appendix B) requires that the 

computer have one of three open ports and be operating Windows XP.  In this case the 

three ports selected were known to be open on our target computer, but if a particular 

application was known to use a particular port, then this is where we could specifically 

target that application.  Alternately, for this vulnerability a denial of service attack is 

recommended, which would prevent that computer from timely access to the network.   

Together these two vulnerabilities allow a MiTM attack to be established between 

the client and the webserver. 

 
Figure 14.  Sample of the exploit XML. 
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2. Network Entity XML 

Figure 15 is one example of a network entity XML taken after only being 

processed by the Detect module.  Network entities in this case consider each unique IP 

address on the network; although, they are not limited by that and the address field 

indicates that this entity is based upon IP address.  A timestamp field is used to give a 

reference to when the scan was created so that multiple scans can be deconflicted and 

changes observed.  Because various discovery programs have different strengths and 

weaknesses, the program which was used is included in its own field.  Next, all 

information is gathered and parsed into its individual fields.  The field to which it is 

parsed should match the field being looked for in the exploit XML.  As discussed in 

Chapter II, the Open Ports and OSGuess are called features. 

 
Figure 15.  Example network entity XML. 

D. GUI 

An example screen shot of the GUI is provided in Figure 16 and is a basic 

indicator of what actions the system is performing.  It also provides buttons to indicate 

failure or success of the final attack in order to update the exploit XML document. 
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Figure 16.  Screenshot of GUI. 

E. DIPR MODULES 

The actions of each module and the end result of those actions are stepped 

through in this section.  The general tasks completed are outlined in Chapter II and are 

discussed in greater depth in the following sections. 

1. Detect Module 

The Detect module is where the discovery program is initially launched and its 

outputs parsed into the standardized format used by the subsequent modules.  The chosen 

discovery program was NMap, so the first thing the module performs is a system call to 

NMap using the command: 

nmap.exe –o 192.168.120.0/24 

This command is the command to scan all addresses in the network, determine 

open and closed ports, speculate an OS and record the MAC address of each active IP 

address on the network.  This is sent to a text file which is later parsed. 

The module then finds the desired features and parses the specific data from the 

text file.  This is built into the standardized network entity XML for that specific IP 

Address that those features belong to.  This is done for each IP Address that NMap was 

able to recognize on the network.  
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The network entity file of the target system after the Detect module has finished 

parsing the data is shown in Figure 17.  The 192.168.120.3 address corresponds to the 

Jaga webserver in our network, and both the MAC address and OS have been correctly 

determined. 

 
Figure 17.  Network entity XML after the Detect module. 

2. Identify Module 

The Identify module is where multiple features are combined to form a State.  To 

accomplish this transformation, the exploit XML is opened up and all the features that 

create a state are pulled and placed into a vector.  This matrix is then compared to the 

features of each IP address.  Should a match occur, an entry is appended to the network 

entity XML of “State 0” and with an indicator of which vulnerability exists. 

The same network entity after the Identify module is shown in Figure 18.  The 

feature of port 80 being open and an OS of Linux have been fused to create a State 0 with 

vulnerability A. 
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Figure 18.  Network entity XML after the Identify module. 

3. Predict Module 

The Predict module is where the state is analyzed and the probabilities for which 

method of exploitation is recommended are determined.  The first step the module takes 

is to retrieve all recommendations for each type of vulnerability and calculate their 

decimal percentage.  For this proof-of-concept, probabilities are determined solely by 

previous successes divided by totals.  The initial values were chosen to force the 

prediction towards a MiTM attack with Ettercap, but the operator feedback at the end of 

the React module eventually skews these numbers either higher or lower.  Next, the 

module picks the attack with the highest probability and append this recommendation to 

the network entity XML. 

Future work for expanding and making this section more complete is discussed in 

Chapter IV.  The network entity file with the addition of recommendations for a MiTM 

attack using Ettercap is depicted in Figure 19.  The information that this attack requires 

an additional vulnerability B to be present for an attack is also included. 
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Figure 19.  Network entity XML after the Predict module. 

4. React Module 

The React module is where the inputs from the previous modules are used to 

launch an actual attack against the target network or computer.  This is done first by 

finding the recommendations of each network entity and determining which has the 

highest probability associated with their recommendation. The module then checks the 

recommendation to see if any further requirements exist.  If additional requirements exist, 

then it searches the other network entities to find the required vulnerability.  If none are 

found, then it moves to the network entity with the next highest probability of success 

associated with its recommendation.  If the additional requirement is found, then it 

provides all of the necessary information to the function which launches the 

recommended attack.  In this occurrence Ettercap was chosen and the command launched 

was: 

ettercap.exe –T –M arp:remote /192.168.120.10/ /192.168.120.3/ 

This command launches a MiTM attack (-M) using ARP Poisoning between the 

network’s webserver (192.168.120.10) and the target (192.168.120.3).  After the 
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command is launched, the network entity XML is updated with the timestamp and attack 

launched. Feedback for success can then be input by the operator, which then updates the 

exploit XML accordingly.  Determination of success or failure is further discussed in the 

next section.   

Figure 20 an illustration of the final network entity XML created which depicts 

that the updated information for the attack performed and timestamp has been added to 

the network entity XML.  

 
Figure 20.  Network entity XML after the React module. 

F. DETERMINING SUCCESS 

The MiTM attack using ARP poisoning is accomplished in a few steps that are 

possible to observe using a monitoring program such as Wireshark. The first step is the 
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ARP Poisoning itself.  This is observed by seeing ARP messages sent to the MAC 

addresses of the two target computers.  Because it is within a single network, only the 

MAC addresses need to be manipulated to intercept the data. The IP addresses of both 

targets remain unchanged through the attack.  As seen in Figure 21, the attack box 

(ending in 00:06) sends ARP messages to both of the victims (ending in 00:07 and 00:05) 

that the IP Address of the other victim belongs to the entity with the attack box MAC 

Address.  This is considered ARP Poisoning of the network because now both victims 

have this information stored in their ARP cache. 

 
Figure 21.  Wireshark capture of ARP poisoning the network via Ettercap. 

A representation of the before and after source/destination IP and MAC addresses 

of the victims is shown in Figure 22.  The attack box is now successfully intercepting any 

information passing between the two victims. 
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Figure 22.  MiTM attack in the network. 

Figure 23 is an illustration of the Wireshark output viewing the traffic between 

the two computers.  This is an example of viewing a simple webpage being accessed by 

the target.  If it was desired to watch similar traffic between the target and a webserver 

not on the network, the MiTM would be launched between the gateway router and the 

target.   

 
Figure 23.  Intercepted traffic viewed in Wireshark. 
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Should all of these indicators be observed, the operator would select “success” in 

the GUI; otherwise, “failure” would be selected.  Further discussion on automating 

verification is discussed in Chapter IV. 

G. CONCLUSIONS 

Final conclusions and results from the proof-of-concept are discussed in this 

section. 

1. Intelligence Automation Success and Flexibility 

The proof-of-concept itself accomplished the goals and tasks laid out in Chapter II 

while only implementing a very limited version of the system.  The groundwork was laid 

for scalability and expansion.  

2. Stealth 

By using only the freeware programs to access the network there is no indication 

to an observer on the network that the process was automated.  

3. Standardization and Scalability 

Standardization of freeware programs which are generated by a wide selection of 

individuals on the internet is impossible, but by using the Detect module as a translator 

program it is possible to integrate them. Ensuring the network entity XML fields and the 

exploit XML fields match is integral to this concept.  

4. Summary 

The proof-of-concept implementation of the DIPR automated intelligence model 

for cyber penetration testing was explained in this chapter.  The physical and virtual 

components as well as the required software were discussed as were the results of each 

module and how they interacted with the entire system.  Future work, improvements and 

final conclusions are discussed in Chapter IV. 
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IV. IMPROVEMENTS, FUTURE WORK AND CONCLUSIONS 

Potential improvements for this specific proof-of-concept, future work which 

would create a more robust product and final conclusions on the success of the overall 

system are covered in this chapter. 

A. IMPROVEMENTS TO THE PROOF-OF-CONCEPT 

After the proof-of-concept was completed and tested, there were a few aspects 

that, if employed differently from the start, would have resulted in greater ease of 

implementation as well as a superior quality end product.  While the current proof-of-

concept meets the intended objectives, there are specific items that would make the 

process smoother. 

1. Operating Environment 

By coding in a Windows environment, the implementation of the freeware 

programs and meeting the program requirements of command line inputs and parseable 

outputs were difficult to meet.  In general, Windows is more user-friendly, GUI focused, 

and in most cases, freeware programs lacked command line inputs or a parseable output. 

Nmap and Ettercap were two of the few programs that met these needs.  By instead using 

a Linux environment for coding, the available number of suitable freeware programs 

would be much higher.  A breakdown of several freeware programs that were examined 

during implementation is shown in Table 2.  While these are by no means all of the 

available freeware programs, the breakdown was indicative of what is typically available.  

Many of the programs for Windows either lacked the command line input or the 

parseable output ability common in Linux based programs. 
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Table 2.   Comparative look at requirements and operating systems in freeware 
programs. 

 Parseable 
Output 

Command 
Line Input 

Discovery Attack 

Windows     
NMap X X X  
Ettercap  (XP) X X X X 
Wireshark X    
tshark X X   
Tethereal (XP)  
*Command line version of Ethereal * X X X X 

tcpdump X    
NetStumbler (Wifi) X X X  
Cain & Able    X 
Nighthawk X  X X 
Linux     
NMap X X X  
Ettercap X X X X 
Wireshark X X   
Xprobe2 X X X  
Cain & Able X X X X 
tcpdump X X   
Ethereal X X X  
dsniff X X X X 
Kismet (Wifi) X X X  
EtherApe X X X  
Netcat X X X X 

2. Robustness 

Due to the limitations of the operating environment, only one of each type of 

program was implemented.  To fully realize the usefulness of standardization, multiple 

types of each program should be included.   

B. FUTURE WORK  

Future work to develop and expand upon the work successfully conducted in this 

thesis is discussed in this section.  Recommendations for building in an additional 

assessment module, statistically modeling the predict module and improving the user 

friendliness of the GUI are discussed. 
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1. Additional Assessment Module 

An additional module that could be added to the overall DIPR module is a 
standalone feedback module that would be able to tap into each of the four modules 
separately.  This would allow a measure of effectiveness for each particular stage and 
could help troubleshooting and streamlining the entire process.  This would allow for on-
the-fly learning and troubleshooting.  If any of the four modules are misconfigured or if 
the exploits themselves are incorrect, a standalone assessment module would be useful to 
find the issue and highlight where corrections need to be made.  The implementation of 
this is shown by Figure 24. 

 

Figure 24.  DIPR internal diagram with additional Assessment module. 

By setting the Assessment module outside of operational flows but with full 
access to each module, the additional module will provide automated oversight and 
trouble shooting. Particularly because of the need for standardization of the XML files 
fields, simple typos or lack of coding expertise during the detect portion for a new 
freeware implementation could result in the system either not working or in a duplication 
of effort.  Because of the nature of the automation, each module could cause the entire 
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system to break down, and the assessment module could help resolve exceptions or errors 
produced by the individual modules. This would reduce the time spent troubleshooting 
and provide a native metric of effectiveness for overall system health.  

Additionally, failures and exceptions created by the attack program could be fed 
into the Assessment module discussed in the previous future works section to provide 
real time feedback and see if additional information needs to either be cultivated from the 
discovery program or if the parameters stated in the exploit document need to be altered. 

2. Predict Module 

The Predict module provides the recommendation for type and implementation of 
cyber penetration attack launched by the React module. By developing and implementing 
a statistical model for which penetration attacks are the most likely to succeed based on 
network configuration, the Predict module can become the keystone of the system. As 
implemented (and as discussed in the previous subsection) in the proof-of-concept, the 
Predict module is simply a less-than or greater-than comparison between success ratios.  
This method is weak because only one implementation of cyber penetration attack will 
ever be generated, and it does not provide the opportunity for other implementations to 
improve their ratio.  Nor does it provide any feedback for how or why those other 
implementations failed. Future work might include developing a model to see which 
implementations work the best and what network characteristics give them the greatest 
chance of success. This can then be used to populate the exploit XML with more detailed 
and precise network/host requirements.   

3. GUI 

A robust GUI aids the operator in launching the desired attack against the 

network.  Automation should be limited only to the implementation of what the operator 

desires; otherwise, the consequences of starting the system cannot be determined 

beforehand.  Creating a GUI that informs the operator of options along the way can also 

be useful in the event that the system is placed onto the network with no prior knowledge 

of components.  Striking the balance between providing flexibility and options while not 

overwhelming the operator with information is a delicate task that can be eased by a user-

friendly advanced GUI. 
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4. Intelligent Automation of New Freeware 

A valuable tool to reduce the amount of manual work for the operator would be 

automating the addition of new programs with a separate system.  By being able to parse 

or determine the various options (either by trial and error or by options via the 

instructional page) and creating rules to determine which programs function together, 

new freeware can easily be imported into the system.  However, this relies on accurate 

and robust documentation of all options for the freeware program, a factor that is unlikely 

to occur in all cases.  Therefore, it does not eliminate the operator or the need for some 

manual coding but would save vast amounts of time and effort if implemented properly. 

C. CONCLUSIONS 

Overall conclusions of both the DIPR system as a whole as well as the proof-of-

concept specifically are presented in this section. 

1. DIPR System 

Overall, the Automated DIPR Penetration Testing System showed a unique and 

scalable method for automation of penetration testing by integrating freeware programs 

into a unified whole.  By utilizing the DIPR intelligence automation model as a backbone 

architecture, integration was possible and showed a versatile adaptation which could be 

used to assimilate many other programs.  Using individual XML documents for each 

entity on a network and an additional XML document to specify desired vulnerabilities, 

we were able to show that outputs of one program could be used to feed into the input of 

a disparate program.  By processing and manipulating the outputs of the discovery 

programs, we can mesh them into a more advanced structure than is possible from any 

single program. 

2. Proof-of-concept 

The proof-of-concept successfully implemented a barebones implementation of 

the Automated Penetration Testing DIPR architecture.  Using NMap and Ettercap as the 

freeware programs, we were able to show that the output of one program, processed and 

standardized, could be the input to another program.  The processing and standardization 
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between these steps is where the artificial intelligence played a role.  The processing was 

done by a series of modules set to detect individual features of network entities and to 

then process and mesh those features into individual states.  These states could be 

interpreted as vulnerabilities and be acted upon. 
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APPENDIX A 

GUI Code 
 
#*********************************************# 
#Module: GUI 
#Purpose: Step through each module, allow input from user 
#to update the exploit xml, display steps 
#Main FCN: WalkThroughSequence 
#*********************************************# 
import Tkinter as tk 
from Tkinter import * 
import tkMessageBox 
import Detect 
import Identify 
import Predict 
import React 
 
#Sets up the GUI# 
top = Tk() 
top.title("DIPR Automated Cyber Penetration System") 
top.geometry("200x250")#sets size and geometry 
 
#*********************************************# 
#Function:  WalkThroughSequence 
#Purpose: Walks through each module, Builds the GUI 
#Input: None 
#Output: v - Success or failure of the entire walk through 
#*********************************************# 
def WalkThroughSequence(): 
   text = Text(top, width = 25, height = 9, wrap = WORD) 
   text.insert(INSERT, 'Starting... \n') 
   text.grid(row = 1,column = 0) 
   y = Detect.Discover("NMap")#runs detect module 
   if y == 'Success': 
      text.insert(END, 'Dectect Successful \n') 
      z = Identify.IdStates()#runs identify module 
      if z == 'Success': 
         text.insert(END, 'Identify Successful \n') 
         w = Predict.Predict() #runs predict module 
         if w == 'Success': 
            text.insert(END, 'Predict Successful \n') 
            (v, vul, atk) = React.React() #runs React Module 
            if v == 'Success': 
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               text.insert(END, 'React Successful.\n Please view Wireshark \n') 
               #adds in the buttons for success or failure 
               #runs the success or failure function located in React 
               C = Button(top, text = 'Success?', command = lambda: 
React.UpdateSuccess(vul, atk)) 
               D = Button(top, text = 'Failure?', command = lambda: React.UpdateFailure(vul, 
atk)) 
               C.grid(row = 2, column = 0) 
               D.grid(row = 3, column = 0) 
   return v 
 
B = Button(top, text ="Start Sequence", command = WalkThroughSequence) 
B.grid(row = 0,column = 0)#puts the button into our window 
 
top.mainloop()#starts and maintains the window until complete 
 
Detect Code 
 
#*********************************************# 
#Module: Detect 
#Purpose: Detect network entities and 
#create XML files with features of Entity 
#Main FCN: Discover 
#*********************************************# 
 
import os 
import subprocess 
import xml.etree.ElementTree as ET 
 
#************************# 
#Function:  Discover 
#Purpose: Discover network entities parse information 
#store parsed information in an XML file 
#Input: Program - Name of program desired to be used to discover the network entities 
#Output: Success - States that the program has completed 
#************************# 
 
 
def Discover(Program): 
   #Calls the NMap Program and pipes the result into a file called infosearch.txt 
   #-O means look for possible Operating systems. To do this it will scan for open ports as 
well 
   #if Program == "Nmap": 
      #os.system('"C:\\Program Files\\Nmap\\nmap.exe" -O 192.168.120.0/24 > 
infosearch.txt') 
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   info = []; 
   y = -1; 
   timestamp = ' ' 
   filen = '' 
   #Index will eventually be the master index XML file that will keep track of who is in 
the network 
   Index = ET.Element('Index') 
   #IP will eventually become the network entity XML 
   IP = ET.Element('Address') 
 
   #Begin to parse the infosearch file with the piped information from NMap 
   for line in open('infosearch.txt', 'r'): #Walk through each line of the file 
      if 'Starting' in line: #pulling the timestamp for each scan 
         k = line.split(' at ') 
         timestamp = k[1] #timestamp at which NMap was run      
      if 'scan report' in line:#We've run into a new IP address make a new port list 
         if y > -1: 
            tree = ET.ElementTree(IP) 
            tree.write(filen, "us-ascii", xml_declaration = None, default_namespace = None, 
method = 'xml') 
            IP = IP.clear() 
            IP = ET.Element('Address') 
         k = line.split(' ') 
         p = k[4].strip() #calling the strip fcn pulls white space of either side of the string 
         filen = 'IP' + p + '.xml' #creates a filename based off of IP address 
         IP.text = k[4].strip() 
         ind = ET.SubElement(Index, 'IP') #creates our top node IP 
         ind.text = k[4].strip() 
         time = ET.SubElement(IP, 'TimeStamp') #Fills in details 
         time.text = timestamp.strip() 
         prog = ET.SubElement(IP, 'ProgramUsed') #What program is being used 
         prog.text = 'Nmap 6.25'     
         y = y+1 
      if 'MAC Address:' in line:#Looks at what the MAC address is for that IP 
         k = line.split(' ') 
         ma = ET.SubElement(IP, 'MacAddress') 
         ma.text = k[2].strip() 
      if 'open' in line: #Looks at what ports are Open 
         k =  line.split('/') 
         op = ET.SubElement(IP, 'OpenPort') 
         op.text = k[0].strip() 
      if 'Running' in line: #Looks at what OS NMap thinks its running 
         k = line.split(':') 
         k = k[1].split(',') 
         for item in k: 
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            if 'or ' in item and item.index('or ') < 4: 
               h = item.split('or ') 
               OSGuess = ET.SubElement(IP, 'OSGuess') 
               OSGuess.text = h[1].strip() 
            else:  
                 OSGuess = ET.SubElement(IP, 'OSGuess') 
                 OSGuess.text = item.strip() 
 
   #Prints our master index list and the XML list to their respective files 
   tree = ET.ElementTree(IP) 
   tree.write(filen, "us-ascii", xml_declaration = None, default_namespace = None, 
method = 'xml') 
   tree = ET.ElementTree(Index) 
   tree.write('IPAddressIndex.xml', encoding = 'us-ascii') 
   return 'Success' 
 
Discover("NMap") 
 
Identify Code 
#*********************************************# 
#Module: Identify 
#Purpose: Go through each Network Entity and 
#determine if a state exists 
#Main FCN: IdStates() 
#*********************************************# 
 
import xml.etree.ElementTree as ET 
from datetime import datetime 
 
#*********************************************# 
#Function:  IsEqual 
#Purpose: Compares an exploit list against a single IP 
#address to determine if a state exists 
#Input: a - exploit vector that looks like: 
#['A', ['OSGuess', 'Linux 2.6.X'], ['OpenPort', '80']] 
#["Name of Vulnerability", [Vector of Aspect followed by specifics], etc..] 
# b - pointer to the XML of a single IP address 
#Output: matching- vector containing the name of vulnerability 
# and if each thing checked were true or false. Will look like: 
#['A', False, False] 
#*********************************************# 
def IsEqual(a , b): 
    matching = [] 
    matching.append(a[0]) 
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    #check for matching ports 
    ports = b.findall('OpenPort') 
    check = [] 
    for p in ports: 
        u = p.text 
        check.append(u) 
    counter = 0 
    ans = False 
    for y in a: 
        if counter > 0: 
            if y[0] == 'OpenPort': 
                for i in y: 
                    for u in check: 
                        if i == u: 
                            ans = True          
        counter = counter +1 
    matching.append(ans) 
 
    #check for matching OSs 
    osg = b.findall('OSGuess') 
    check = [] 
    for os in osg: 
        u = os.text 
        check.append(u) 
    counter = 0 
    ans = False 
    for y in a: 
        if counter > 0: 
            if y[0] == 'OSGuess': 
                for i in y: 
                    for u in check: 
                        if i in u: 
                            ans = True 
        counter = counter +1 
    matching.append(ans) 
    return matching 
 
#*********************************************# 
#Function:  GetExploits 
#Purpose: pulls the entire exploit xml and makes 
#it a vector we can use to compare to the IP address 
#Input: None 
#Output: exploitlist vector contains a list of exploits and vectors for 
#for the various aspects.  Looks like: 
#[['A', ['OSGuess', 'Linux 2.6.X'], ['OpenPort', '80']], 
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# ['B', ['OSGuess', 'Microsoft Windows 2000|XP', 'Windows XP SP2'], ['OpenPort', 
'3389', '6667', '7000']]] 
#*********************************************# 
def GetExploits(): 
    tree = ET.parse('Exploits.xml') 
    root = tree.getroot() 
    exploitlist = [] 
    l=0 
    for Vul in root.iter('Vulnerability'):   
        y = []  
        exploitlist.append([Vul.text]) 
        for Asp in Vul.iter('Aspect'): 
            y.append(Asp.text) 
            for Sp in Asp.iter('Spec'): 
                y.append(Sp.text) 
            exploitlist[l].append(y)        
            y =[] 
        l = l+1; 
    return exploitlist 
 
#*********************************************# 
#Function:  GetIPAddresses 
#Purpose: pulls all IP addresses from the master list and returns a vector with them 
#Input: None 
#Output: vector list of IP addresses 
#Looks like: ['192.168.120.3', '192.168.120.4', '192.168.120.10', '192.168.120.150'] 
#*********************************************# 
def GetIPAddresses(): 
    tree = ET.parse('IPAddressIndex.xml') 
    root = tree.getroot() 
    IPAddList = [] 
    for IP in root.iter('IP'): 
        IPAddList.append(IP.text) 
    return IPAddList 
 
#*********************************************# 
#Function:  IdStates 
#Purpose: uses other functions to create queries, test if they are true 
#and then updates the network entity xml to reflect that a state exisits or not 
#Input: None 
#Output: "Success" to let the GUI know that Identify completed correctly 
#*********************************************# 
def IdStates(): 
    elist = GetExploits() 
    ilist = GetIPAddresses() 
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    for add in ilist: 
        filen = 'IP' + add + '.xml' 
        tree = ET.parse(filen) 
        root = tree.getroot() 
        t = datetime.now().strftime("%Y-%m-%d %I:%M%p") 
        for ex in elist: 
            ans = IsEqual(ex, root) 
            if all(ans): 
                state = ET.SubElement(root, 'State') 
                state.text = 'State 0' 
                Vul = ET.SubElement(state, 'Vulnerability') 
                Vul.text = ans[0] 
                Time = ET.SubElement(state, 'TimeStamp') 
                Time.text = t + " Pacific Daylight Time" 
        tree.write(filen, 'us-ascii') 
    return 'Success' 
 
IdStates() 
 
Predict Code 
 
#*********************************************# 
#Module: Predict 
#Purpose: Go through each Network Entity, find if a state 
#exists, make a recommendation for an attack for that state 
#provide expected probability of success 
#Main FCN: Predict() 
#*********************************************# 
 
import xml.etree.ElementTree as ET 
from datetime import datetime 
 
#*********************************************# 
#Function:  GetRecommendations() 
#Purpose: Opens exploits.xml, calculates recommended exploits 
#and percentages 
#Input: None 
#Output: list of exploits and probabilities. Looks like: 
#[['A', ['MiTM-Ettercap', 0.625, 'B'], ['MoTS-Cain and Able', 0.428]]] 
#*********************************************# 
def GetRecommendations(): 
    tree = ET.parse('Exploits.xml') 
    root = tree.getroot() 
    exploitlist = [] 
    l=0 
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    for Vul in root.iter('Vulnerability'):   
        y = []  
        exploitlist.append([Vul.text]) 
        for Rec in Vul.iter('Recommend'): 
            y.append(Rec.text) 
            for Pr in Rec.iter('Prob'): 
                v = Pr.text 
                v = v.split(':') 
                n = float(v[0])/float(v[1]) 
                y.append(n) 
            for Rq in Rec.iter('Requires'): 
                y.append(Rq.text) 
            exploitlist[l].append(y)        
            y =[] 
        l = l+1; 
    return exploitlist 
 
#*********************************************# 
#Function:  GetIPAddresses 
#Purpose: pulls all IP addresses from the master list and returns a vector with them 
#Input: None 
#Output: vector list of IP addresses 
#Looks like: ['192.168.120.3', '192.168.120.4', '192.168.120.10', '192.168.120.150'] 
#*********************************************# 
def GetIPAddresses(): 
    tree = ET.parse('IPAddressIndex.xml') 
    root = tree.getroot() 
    IPAddList = [] 
    for IP in root.iter('IP'): 
        IPAddList.append(IP.text) 
    return IPAddList 
 
#*********************************************# 
#Function:  MakeRec 
#Purpose: given a vector of found vulnerabilities choose the 
#one with the highest prob and return it 
#Input: r. List of exploits. 
#Looks like: [['A', ['MiTM-Ettercap', 0.625, 'B'], ['MoTS-Cain and Able', 0.428]]] 
#General form is Name of Vulnerability, [Name of attack, probability, additional 
requirements], etc 
#Output: Exploit with recommended attack and probability and any other requirements 
#Looks like: ['MiTM-Ettercap', 0.625, 'B'] 
#Note: most future work with Predict would be in here 
#*********************************************# 
def MakeRec(r): 
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    y = [' ', 0] 
    counter = 0 
    for a in r: 
        if counter > 0: 
            if a[1] > y[1]: 
                y = a 
        counter = counter +1 
    return y 
 
#*********************************************# 
#Function:  Predict 
#Purpose: Go through network entities, see if a state 0 exists, if it does find 
#the recommended exploit, update the entity xml to reflect this 
#Input: None 
#Output: Success to indicate the module has run correctly 
#*********************************************# 
def Predict(): 
    rlist = GetRecommendations() 
    ilist = GetIPAddresses() 
    t = datetime.now().strftime("%Y-%m-%d %I:%M%p") 
    for add in ilist: 
        filen = 'IP' + add + '.xml' 
        tree = ET.parse(filen) 
        root = tree.getroot() 
        for st in root.iter("State"): 
            if st.text == "State 0": 
                for vul in st.iter('Vulnerability'): 
                    for r in rlist: 
                        if r[0] == vul.text: 
                            z = MakeRec(r) 
                            RElem = ET.SubElement(root, 'Recommend') 
                            RElem.text = z[0] 
                            TElem = ET.SubElement(RElem,'Timestamp') 
                            TElem.text = t 
                            PElem = ET.SubElement(RElem, 'Prob') 
                            PElem.text = str(z[1]) 
                            if len(z) > 2: 
                                QElem = ET.SubElement(RElem, 'Requires') 
                                QElem.text = z[2] 
        tree.write(filen, 'us-ascii') 
    return 'Success' 
Predict() 
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React Code 
 
#*********************************************# 
#Module: React 
#Purpose: Take recommendations from the network entities 
#verify required conditions exist.  Launch attack. Update 
#success or failutre based on user input 
#Main FCN: React() 
#*********************************************# 
import xml.etree.ElementTree as ET 
import subprocess 
from datetime import datetime 
 
#*********************************************# 
#Function:  GetVulnerabilities 
#Purpose: Finds vulnerabilities in each XML file and 
#returns them to the calling function along with their 
#probability and any requirements 
#Input: None 
#Output: (vlist, prob)  vlist is a matrix containing 
#vectors of IP addresses with recommended attacks, the attack 
#and further requirements for the attack 
#vlist looks like: [['A', '192.168.120.3', 'MiTM-Ettercap', 'B'], 
#['192.168.120.10', 'DOS-Cain and Able'], 
#prob is a vector of probabilities of each of the vlist addresses 
#prob looks like: ['0.625', '0.6', '0.625'] 
#*********************************************# 
def GetVulnerabilities(): 
    ilist = GetIPAddresses() 
    vlist = [] 
    prob = [] 
    for i in ilist: 
        filen = 'IP'+ i + '.xml' 
        tree = ET.parse(filen) 
        root = tree.getroot() 
        hold = [] 
        for v in root.iter("State"): 
            for s in v.iter("Vulnerability"): 
                hold.append(s.text) 
        for rc in root.iter("Recommend"): 
             
            hold.append(root.text) 
            hold.append(rc.text) 
            for pr in rc.iter("Prob"): 
                prob.append(pr.text) 
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            for rq in rc.iter("Requires"): 
                hold.append(rq.text) 
            vlist.append(hold) 
    return (vlist, prob) 
 
#*********************************************# 
#Function:  FindVul 
#Purpose: Finds a specific vulnerability from all of the IP 
#addresses. Used to see if additional requirements are met 
#Input: fv - name of the vulnerabilty to be found i.e., 'B' 
#Output: IP- returns first IP address of a entity with that 
#vulnerability 
#*********************************************# 
def FindVul(fv): 
    ilist = GetIPAddresses() 
    IP = 'No IP Found' 
    for i in ilist: 
        filen = 'IP' + i + '.xml' 
        tree = ET.parse(filen) 
        root = tree.getroot() 
        for vul in root.iter('Vulnerability'): 
            if vul.text == fv: 
                IP = root.text 
    return IP 
 
#*********************************************# 
#Function:  runEttercap 
#Purpose: Runs the ettercap program from the command line 
#Input: victim1 and victim2- IP addresses of the two entities we'd like to 
#perform a MiTM attack on  
#Output: True - denotes attack called 
#*********************************************# 
def runEttercap(victim1, victim2): 
    #command = ["C:\\Program Files\\Ettercap Development Team\\Ettercap-
0.7.4\\ettercap.exe", '-T', '-M', 'arp:remote', '/'+ victim1+ '/', '/'+ victim2 + '/'] 
    #subprocess.call(command) 
    update(victim1, True, 'MiTM-Ettercap') 
    return True 
 
#*********************************************# 
#Function:  update 
#Purpose: Updates the entity xml with the time date and success 
#(or failure) of the attack 
#Input: IP - network entity IP address, Success- success or failure 
#Attack - what attack was performed 
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#Output: True - denotes update complete 
#*********************************************# 
def update(IP, Success, Attack): 
    filen = 'IP' + IP + '.xml' 
    tree = ET.parse(filen) 
    root = tree.getroot() 
    t = datetime.now().strftime("%Y-%m-%d %I:%M%p") 
    if Success == True: 
        AElem = ET.SubElement(root, 'AttackPerformed') 
        AElem.text = Attack 
        TElem = ET.SubElement(AElem, 'TimeStamp') 
        TElem.text = t 
    tree.write(filen, 'us-ascii') 
    return True 
 
#*********************************************# 
#Function:  GetIPAddresses 
#Purpose: pulls all IP addresses from the master list and returns a vector with them 
#Input: None 
#Output: vector list of IP addresses 
#Looks like: ['192.168.120.3', '192.168.120.4', '192.168.120.10', '192.168.120.150'] 
#*********************************************# 
def GetIPAddresses(): 
    tree = ET.parse('IPAddressIndex.xml') 
    root = tree.getroot() 
    IPAddList = [] 
    for IP in root.iter('IP'): 
        IPAddList.append(IP.text) 
    return IPAddList 
 
#*********************************************# 
#Function:  React 
#Purpose: gets list of possible attacks, probabilities and requirements 
#finds highest probability, if requirements are met it launches that attack 
#if they are not it goes to the next highest probabilty and continues to check 
#until it can launch. Then it updates. 
#Input: None 
#Output: Success- tells GUI that react module completed 
#*********************************************# 
def React(): 
    (vlist, prob) = GetVulnerabilities() 
    p = prob.index(max(prob)) 
    attack = vlist[p] 
    if len(attack) > 3: 
        v2 = FindVul(attack[3]) 
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    if attack[2] == 'MiTM-Ettercap': 
        runEttercap(attack[1], v2)         
    if attack[2] == 'DOS-Cain and Able': 
        print 'No current attack...sorry' 
    return ('Success', attack[0], attack[2]) 
 
#*********************************************# 
#Function:  UpdateSuccess 
#Purpose: Updates Exploit XML probability for that attack with 
#success. 
#Input: Vul - vulnerability exploited 
#Attack - attack launched for that vulnerability 
#Output: 'Updated' to indicate that update has completed 
#*********************************************# 
def UpdateSuccess(Vul, Attack): 
    tree = ET.parse("Exploits.xml") 
    root = tree.getroot() 
    for V in root.iter("Vulnerability"): 
        if V.text == Vul: 
            for A in V.iter("Recommend"): 
                if A.text == Attack: 
                    for P in A.iter("Prob"): 
                        k = P.text.split(":") 
                        k[0] = int(k[0])+1 
                        k[1] = int(k[1])+1 
                        m = str(k[0])+ ":" + str(k[1]) 
                        P.text = m 
    tree.write("Exploits.xml", 'us-ascii') 
    return 'Updated' 
 
#*********************************************# 
#Function:  UpdateFailure 
#Purpose: Updates Exploit XML probability for that attack with 
#failure. 
#Input: Vul - vulnerability exploited 
#Attack - attack launched for that vulnerability 
#Output: 'Updated' to indicate that update has completed 
#*********************************************# 
def UpdateFailure(Vul, Attack): 
    tree = ET.parse("Exploits.xml") 
    root = tree.getroot() 
    for V in root.iter("Vulnerability"): 
        if V.text == Vul: 
            for A in V.iter("Recommend"): 
                if A.text == Attack: 
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                    for P in A.iter("Prob"): 
                        k = P.text.split(":") 
                        k[1] = int(k[1])+1 
                        m = k[0]+ ":" + str(k[1]) 
                        P.text = m 
    tree.write("Exploits.xml", 'us-ascii')    
    return 'Updated' 
 
React() 
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APPENDIX B 

Exploit.xml 
 
<Exploits> 
 <Vulnerability>A 
  <Aspect>OSGuess 
   <Spec>Linux 2.6.X</Spec> 
  </Aspect> 
  <Aspect>OpenPort 
   <Spec>80</Spec> 
  </Aspect> 
  <Recommend>MiTM-Ettercap 
   <Prob>5:8</Prob> 
   <Requires>B</Requires> 
  </Recommend> 
  <Recommend>MoTS-Cain and Able 
   <Prob>3:7</Prob> 
  </Recommend> 
 </Vulnerability> 
 <Vulnerability>B 
  <Aspect>OSGuess 
   <Spec>Microsoft Windows 2000|XP</Spec> 
   <Spec>Windows XP SP2</Spec> 
  </Aspect> 
  <Aspect>OpenPort 
   <Spec>3389</Spec> 
   <Spec>6667</Spec> 
   <Spec>7000</Spec> 
  </Aspect> 
  <Recommend>MiTM-Ettercap 
   <Prob>5:10</Prob> 
  </Recommend> 
  <Recommend>DOS-Cain and Able 
   <Prob>6:10</Prob> 
  </Recommend> 
 </Vulnerability> 
</Exploits> 
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